Application of Robustness and Reliability Analysis

WOST 2023, 23rd of June

Marco Grosse, Bernd Büttner

© Copyright 2023 ANSYS, Inc. / Confidential

Biography

- Lead Application Engineer
- ACE/EMEA FES, pre-sales support for Ansys optiSLang, professional services for PIDO
- more than 20 years experience with ANSYS an LS-DYNA
- working for Dynardo/Ansys since 2005
- background: civil engineering, structural mechanics and dynamics, nonlinear material behavior, PIDO

Stay Connected!

齏 +49 (0) 3643 5653417

- **+**49 (0) 160 9875 1448
- 🖄 Marco.Grossse@ansys.com

Biography

- Manager Application Engineering for PIDO Solutions
- Working with Ansys for more than 6 years
- Background: medical engineering, optics, microfluidics (biological and chemical applications), CFD and Robust Design Optimization

Stay Connected!

- **+**49 (0) 160 987 488 44
- bernd.buettner@ansys.com

- Overview
- Simple test function for reliability methods
- ADAS/ AD application example
- Nested Robustness Evaluation in Multi-objective Design Optimization Validation
- Questions / Discussions

Ansys optiSLang for Process Integration and Design Optimization

Exercise Exerci					Task Per frace Database Per frace Design Fear Per second Very Per second Per frace Per second Per second Per second Per second Very Per second Per second Per second Per second Per second Per second Very Per second Per second Per second Per second Per second Per second Very Per second Per second Per second Per second Per second Per second Very Per second Per second Per second Per second Per second Per second Very Per second Per second Per second Per second Per second Per second Very Per second Per second Per second Per second Per second Per second Very Per second Per second Per second Per second Per second Per second
Easy to build and publish repetitive workflows	Identify important model parameter for the best fit between simulation and measurement	Investigate parameter sensitivities, reduce complexity and generate best possible metamodels	Optimize design performance	Ensure design robustness and reliability	Entire organization benefits from workflows provided by CAE-experts

Variance and Reliability Based Robustness Analysis

6. failure probability by reliability analysis

5. parameter importance by robustness analysis

Sensitivity and Robustness analysis for simple test function

Mishra's Bird Function

A simple example: Mishra's Bird Function

test function used for events in advanced driver assistance systems

By DoE sampling a specific number of samples is generated and evaluated,
 Latin Hypercube Sampling: reduced sample size, decrease unwanted input correlation

* Sudhanshu K Mishra. Some new test functions for global optimization and performance of repulsive particle swarm method. Available at SSRN 926132, 2006

Name	Reference value	Value type	Resolution	Ra	nge	Range plot
X1	-5	REAL	Continuous	-10	0	
X2	-3.25	REAL	Continuous	-6.5	0	

-1

- 2. Responses are approximated by high-fidelity, high-precision surrogate models.
- 3. Parameter influence is quantified using the approximation model.

Name	Reference value	Value type	Resolution	Ra	nge	Range plot
X1	-5	REAL	Continuous	-10	0	
X2	-3.25	REAL	Continuous	-6.5	0	

Name	Туре	Expression	Criterion	Limit
🔺 lim_st_Y	Limit state	Y	≥	-20.0

• 1000 Monte-Carlo samples no sample above limit state

Define parameter correlations

Monte-Carlo-Sampling

Name	PDF	Туре	Mean Std. Dev.		CoV	Distribution parameter
X1	$ \land $	TRUNCATEDNORMAL	-5	0.75	15 %	-5; 0.75; -10; 0
X2	\wedge	TRUNCATEDNORMAL	-5	0.750001	15 %	-5.07704; 0.823449; -6.5; 0

• 1000 Monte-Carlo samples

=> no chance to extrapolate Probability of Failure from response probability distribution

Name	Туре	Expression	Criterion	Limit	
🔺 lim_st_Y	Limit state	Y	≥	-20.0	

Plain Monte-Carlo-Sampling

Name	PDF	Туре	Mean	Mean Std. Dev. Co		Distribution parameter
X1	$ \land $	TRUNCATEDNORMAL	-5	0.75	15 %	-5; 0.75; -10; 0
X2	\frown	TRUNCATEDNORMAL	-5	0.750001	15 %	-5.07704; 0.823449; -6.5; 0

• 300'000 Monte-Carlo samples (aborted) no sample above limit state

Monte-Carlo-Simulation, estimation for COV=10%: $n \ge 100/PoF_{est} \approx 100/5e-07$ = 2.0e+08!

Advanced Methods for Reliability Analysis

Ansys

Comparison of the determined PoF

Reliability algo.	No. samples	PoF
ARSM-DS	300	6.4e-07
AS	2 000	4.7e-07
DS	1 085	5.2e-07
FORM	890	1.3e-06
FORM + ISPUD	+ 6 000	4.7e-07
MCS ¹	200 000 000 (aborted at 300 000)	?

¹ estimation Monte-Carlo-Simulation for COV=10%: $n \ge 100/PoF_{est} \approx 100/5e-07 = 2.0e+08!$

^{©2023} ANSYS, Inc. / Confidential

Adaptive Sampling

PoF = 4.7e-07

- in first step scan of parameter space
- statistical information about failure domain are used to increase amount of failure events
- focus on most probable failure domain
- check for converged results

3.83536e-08

1.27696e-06

-8

-6

-4

Ansys

INPUT : X1

Probability of failure (FORM) :

Conclusion

- advanced reliability methods are recommended for probability < 1/1000 since effort for Monte-Carlo approach increases inversely proportional to expected probability
- before reliability analysis run sensitivity study within the bounds of stochastic parameters or a robustness analysis to gain deeper design understanding
- reliability analysis operate in Standard Normal/Gaussian Space
- reliability analysis in two steps: fast detection of failure mechanisms and efficient quantification of failure probability
- failure mechanisms detection: scan of the stochastically space up to 8 Sigma or by scaling the standard deviation (3.0 by default)
- failure mechanisms detection is easy to use for half-space with transition from safe to unsafe domain, but search need to be adapted for local spots

Probability of failure for the cut-out scenario

Scenario-Based Safety Assessment using Ansys optiSLang

Customer Goals

Milage required to proof AD/ADAS system safety cannot be tested operational in field \rightarrow scenarios need to be simulated

Simulating complete required milage is also not feasible \rightarrow collision relevant scenarios need to be identified to significantly reduce number of required simulations

Solution

MA

Only «interesting» logical scenarios are analyzed

Sensitivity analysis in optiSLang allows for the identification of parameters with highest impact & model failure

Reliability analysis in optiSLang to determine the probability of failure for a logical scenario to compare performance between ADAS software versions & identification of critical parameters

Benefits

- Allows for ADAS software function testing, verification & certification
- Identification of critical / relevant parameters
- Number of simulation scenarios can be reduced by factor 1000

 $P(\operatorname{crash/km}) = P(\operatorname{crash} | \operatorname{scenario}_1)P(\operatorname{scenario}_1/\operatorname{km}) \\ + \dots + P(\operatorname{crash} | \operatorname{scenario}_{rest})P(\operatorname{scenario}_{rest}/\operatorname{km})$

Cut-out scenario simulation

- ideal sensors to measure distance to preceding car
- custom AEB¹ function by FMU-Plug-In
- emergency braking initiation based on: Time-to-Collision (TTC) and Time-to-break-threshold (TTBT)

Parameter definition

11 parameters used for sensitivity/optimization9 parameters used for stochastic analyses4 dependent parameters

Set up Parametric Variation Analysis

- scanning space of 11 parameters of type 'Optimization'
- approximation by surrogate model without over-fitting, objective measure of prognosis quality = CoP
- automatic determination of relevant parameter subspace

From **VUT speed** control by the AEB function can be observed:

- if situation permits, VUT will decelerate to jam speed and follows at safe distance (e.g. 7)
- braking to zero is forced only in hazardous situations (eg. 76, 54)
- physical limitation of VUT deceleration to 6 m/s²

acceleration [m/s²]

VUT

physical limit

of 6 m/s²

- restriction to physical deceleration limit of 6m/s² needed, but for small MaxDecel min. distance is too large (e.g. 76)!
- significant increase of collisions for speed higher than 60 km/h
- ideal sensor not able to detect jam end through preceding car therefore, drastic drop in TTC => collision cannot be prevented

Robustness Analysis

- 9 parameters included in stochastic analyses
- automatic ranking of parameter scatter based on MOP
- statistical analysis of responses
 => probability of collision is P_rel = 3%

Reasons for high PoF:

- no detection of jam end through leading car
- statistical model speed vs. offset includes
 speeders and pushers, no Adaptive Cruise Control (ACC)

Reliability Analyses: Limiting the impact velocity

- motivation: reliability ev injuries at medium spee
- goal: multilinear curve a g on initial speed
- solution: for reliability a used on both sides of the

yses. Linning the impact v	ei
aluation against fatalities at high spee ds and whiplash at low speeds	ds,
s limit state for impact velocity dependent	din
nalysis mathematical expressions can l e limit state definition	с

Criteria

tw

fw v0

Name

ego_v_impact

∫∞ limit_val

Type

🔺 limit_state_def Limit state |ego_v_impact

Variable

Variable

Variable

Reliability Analyses: Limiting the impact velocity

- exemplary shown results from the ISPUD analysis
- one unsafe domain with MPFPointDesign

Reliability Analyses: Limiting the impact velocity

- scenario-based software in the loop testing of ADAS / AD functions
- automated workflows enable automated tests running overnight, e.g. after update of assistance function, of scenario-based simulation or of statistical models
- sensitivity study to scan ODD for collision-relevant scenario characteristics (edge and corner case identification)
- robustness analysis to estimate results/KPI variation and to identify safety critical inputs
- reliability analysis to efficiently quantify small probability for limit values, complex mathematical expressions can be used as limit states

Nested Robustness Evaluation in Multi-objective Design Optimization Validation

How to Define the Robustness of a Design?

- Intuitively: The performance of a robust design is largely unaffected by random perturbations
- Variance indicator: The coefficient of variation (CoV) of the objective function and/or constraint values is not greater than the CoV of the input variables
- **Sigma level:** Keep an undesired performance outside an interval of mean +/- sigma level (e.g. design for six-sigma)
- Probability indicator (Reliability analysis): The probability of reaching undesired performance is smaller than an acceptable value

reliab

How to Define the Robustness of a Design?

- Performance (objective) of robust optimum is less sensitive to input uncertainties
- Minimization of statistical evaluation of objective function *f* (e.g. minimize mean and/or standard deviation)

Robustness in terms of requirements

- Safety margin (sigma level) of one or more responses y:
- Reliability (failure probability) with respect to given limit state

Iterative (single objective) Robust Design Optimization

- Decoupled optimization and robustness/reliability analysis
- For each optimization run the safety factors are adjusted for the critical model responses
- ➔ In our implementation variance-based robustness analysis is used inside the iteration and a final reliability proof is performed for the final design

Coupled (single objective) Robust Design Optimization

- Fully coupled optimization and robustness/reliability analysis
- For each optimization (nominal) design the robustness/reliability analysis is performed
- → Implementation uses small sample variance-based robustness measures during the optimization (≥ 10 Designs) and a final (more accurate) reliability proof
- → But still the procedure is often not applicable to complex CAE models

Hybrid Robust Design Optimization

- Decoupled multi-objective optimization and robustness/reliability analysis
- For each validation design from the optimization run averaged performances are acquired
- Applicable to variance- and reliability-based RDO

^{©2023} ANSYS, Inc. / Confidential

Example

Specification

Requirement	Value	Unit
Peak torque	400	Nm
Peak power @ 3krpm, 6krpm	120, 100	kW
Cont. torque @ 1krpm, 5krpm	300, 124	Nm
Maximum speed	7000	Rpm
Cooling system	VVJ	
Coolant flow rate	≤ 6.5	l/min
Coolant fluid type	EWG	
Coolant inlet temperature	65	°C
Line current	≤ 500	A _{rms}
DC bus voltage	350	V
Package envelope	330 (Ф) х 220	mm

• Machine topology:

- Stator slots = 24
- Rotor poles = 16
- V-shaped magnets

• Materials:

- Magnets: N48UH
- Magnetic cores: 235-35A

• Winding:

- Double-layer, concentrated
- Parallel paths per phase = 6

• Geometry:

- Stator diameter (mm) = 300
- Mechanical airgap (mm) = 1

Optimization Scenario

• Objectives:

Maximum efficiency over WLTP-3

□ Minimum active volume

• Constraints:

□ Continuous torque (Nm) @ 1krpm ≥ 300
□ Continuous torque (Nm) @ 5krpm ≥ 124
□ Peak power (kW) @ 3krpm ≥ 120
□ Peak power (kW) @ 6krpm ≥ 100
□ Torque ripples (%) @ 1krpm ≤ 10

□ Von-Mises stress (MPa) @ 8.4krpm ≤ 300

WLTP-3 Drive Cycle

Initial Design Space

Parameter	Range	Unit
Active length	[70; 150]	mm
Bridge thickness	[0.4; 3]	mm
Magnet post	[0.4; 3]	mm
Magnet thickness	[4; 10]	mm
Pole arc ratio	[0.7; 1]	
Pole V angle	[90; 180]	0
Slot depth ratio ¹	[0.45; 0.8]	
Slot width ratio ²	[0.4; 0.7]	
Split ratio ³	[0.58; 0.85]	
Slot opening ratio ⁴	[0.2; 0.8]	

¹Slot Depth / (Slot Depth + Stator Back Iron Thickness)
²Slot Width / (Slot Width + Stator Tooth Width)
³Stator Inner Diameter/ Stator Outer Diameter
⁴Slot Opening Width/ Slot Pitch

Motor-CAD Integration

- Motor-CAD is ActiveX driven through Python environment in order to:
 - 1. Assign input design parameters
 - 2. Run multiphysics calculations
 - 3. Extract output performance data

• ActiveX controls can be found in Motor-CAD in one click.

AMOP results

Multi-objective optimization

• Optimization Wizard to build Multi-objective optimization

Automatic Build Process with One-Click-Optimization and Validation

Variance-based robustness evaluation for best designs

- Optimization Wizard to build Multi-objective optimization
 - Add Robustness System to Validator System
 - "Last Chance" to add stochastic Properties for the Parameters

Variance-based robustness evaluation for best designs

- Optimization Wizard to build Multi-objective optimization
 - Add Robustness System to Validator System
 - "Last Chance" to add stochastic Properties for the Parameters

AMOP – with validated multi-objective optimization

• AMOP:

- Refine MOP with objectives in mind
- One-Click-Optimization:
 - Multi-objective optimization
- Validator System
 - Validates few best design candidates

AMOP – with validated multi-objective optimization

• AMOP:

- Refine MOP with objectives in mind
- One-Click-Optimization:
 - Multi-objective optimization
- Validator System
 - Validates few best design candidates

Validation results

- Hybrid Approach shows non-approximated Pareto front with Standard deviation
 - Compromise Evaluation can be done with Robustness in mind
 - Fragility Curves could be incorporated

Pareto-Front with Standard Deviation of the two objectives

//nsys

Process Integration

Parametric model as base for:

- User-defined optimization (design) space
- Naturally given robustness (random) space

Design variables

Entities that define the design space (Parameter type: Optimization

(Parameter type: Stochastic)

Response variables Outputs from the system

//nsys

Input and Response Variables

• Scalar design variables:

- of value type REAL, INTEGER, STRING and BOOL
- and with resolution of continuous, discrete and binary

• Scalar stochastic variables with continuous resolution

Value type	Resolution	Ra	nge	Range plot]									
					PDF	Туре	Mean	Std. Dev.	CoV	Distribution parameter				
REAL	Continuous	8	10		\land		0.02	0.01	E0.0/	4 00000 0 470001				
STRING	Nominal discrete	steel: wood	steel; wood; aluminium [0-100];			LOGNORMAL	0.02	0.01	50 %	-4.02359; 0.472381				
Shang		Steel, Wood,				EXPONENTIAL	1	2	200 %	2; -1				
INTEGER	Discrete by value	[0-100];)-100];)-100];		[0-100];			NORMAL	20	
BOOL	Ordinal discrete (by index)	false: true				NORMAL	20	1	5 %	20; 1				
0002		rube, crue			1									
desian variables							stochas	tic varial	bles	Innut variable				

- Scalar responses with continuous resolution
- Vector responses with continuous resolution having variable length
- Signal responses having variable length and several channels
- 2D and 3D field data using enterprise add-on (Statistics on Structure SoS)

Response variables

Numeric values only

Before Scenario

- High entry barrier to start with robustness
- High simulation effort using standard Monte-Carlo approach
- Optimum not check against manufacturing scattering
- No quantification of risks
- No ranking of parameter scatter (Tolerances)

After Scenario

- Quantification of variable scatter as qualified input for subsequent stochastic analysis
- Easy setup of robustness & reliability analysis
- Automatic ranking of parameter scatter
- Less simulation even for small probability of failure

- Powerful procedure to check design quality: Robustness evaluation with optimized DoE, Proof of Reliability with leading edge algorithms even for multiple failure regions.
- Statistical analysis of input correlations and fit of distribution functions.
- Guided wizards for easy and safe usage.

Exceedance Probability

• Probability of reaching values above a limit

$$P_{\xi} = P[X \ge \xi]$$

ξ	μ	$\mu + \sigma$	$\mu + 2\sigma$	$\mu + 3\sigma$	$\mu + 4\sigma$	$\mu + 5\sigma$
P_{ξ}	$5.0 \cdot 10^{-1}$	$1.6 \cdot 10^{-1}$	$2.3 \cdot 10^{-2}$	$1.3 \cdot 10^{-3}$	$3.2 \cdot 10^{-5}$	$2.9 \cdot 10^{-7}$

How to Define the Robustness of a Design?

Robustness in terms of stability

- Performance (objective) of robust optimum is less sensitive to input uncertainties
- Minimization of statistical evaluation of objective function *f* (e.g. minimize mean and/or standard deviation):

$$\bar{f} \to min \text{ or } \bar{f} + \sigma_f \to min$$

Robustness in terms of requirements

Safety margin (sigma level) of one or more responses y:

$$(y_{limit} - \mu_Y) / \sigma_Y \ge a$$

• Reliability (failure probability) with respect to given limit state: $p_F < p_F^{target}$

How to Define the Robustness of a Design?

- Intuitively: The performance of a robust design is largely unaffected by random perturbations
- Variance indicator: The coefficient of variation (CoV) of the objective function and/or constraint values is not greater than the CoV of the input variables
- Sigma level: Keep an undesired performance outside an interval of mean +/- sigma level (e.g. design for six-sigma)
- **Probability indicator:** The probability of reaching undesired performance is smaller than an acceptable value

analysi

bustness

Das

ariance

How to quantify uncertainty?

Variance and Reliability Based Robustness Analysis

2. derive and include parameter scatter and correlation.

6. quantify uncertainty by reliability analysis

5. parameter importance by robustness analysis

Method : First Order Reliability Method (FORM)

Probability of Failure : 1.31819e-06 Reliability Index : 4.69729

Number of designs

Total : 890 Safe domain : 734 Unsafe domain : 156 Failure strings : 0 Failed : 0

Most probable failure point(s)

ID:	406	886	45
Input parameter values			
X1:	-3.76305	-8.84377	-8.8750
X2:	-2.61315	-1.79501	-1.4302
Reliability index (FORM) : Probability of failure (FORM) :	4.70337 1.2795e-06	5.37468 3.83591e-08	5.5803 1.20003e-0

Concrete Scenario 107 with most drastic TTC drop

