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Agenda

• Overview

• Simple test function for reliability methods

• ADAS/ AD application example

• Nested Robustness Evaluation in Multi-objective Design Optimization Validation

• Questions / Discussions
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Ansys optiSLang for Process Integration and Design Optimization

Automated 
Workflows

Easy to build and 
publish repetitive 

workflows

Entire organization 
benefits from workflows 
provided by CAE-experts

Automation

Identify important 
model parameter for 
the best fit between 

simulation and 
measurement

Model 
Calibration

Sensitivity 
Design Understanding

Optimization
Design Improvement

Robustness
Design Quality

Parametric Variation Analysis

Optimize design 
performance

Ensure design 
robustness and 

reliability

Investigate parameter 
sensitivities, reduce 

complexity and 
generate best possible 

metamodels

Publish as 
web apps

Democratization
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Variance and Reliability Based Robustness Analysis 

2. derive and include parameter
scatter and correlation

5. parameter importance
by robustness analysis

X1

X2 

X3 

X3 X2 

1. automate
simulation workflow

Input Files Solve Output Files

3.define limit state

4. check the variation6. failure probability
by reliability analysis

m

fX(x)

x

PoF

Limit state

Run Analysis

??



Sensitivity and Robustness 
analysis for simple test 
function
Mishra’s Bird Function
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A simple example: Mishra’s Bird Function
test function used for events in advanced driver assistance systems

* Sudhanshu K Mishra. Some new test functions for global optimization and performance of repulsive particle swarm method. Available at SSRN 926132, 2006

Mishra’s Bird Function* is given as:

Y = 𝑓 𝑋1, 𝑋2 =

+𝑠𝑖𝑛 𝑋2 ∙ 𝑒 1−𝑐𝑜𝑠 𝑋1
2

+ 𝑐𝑜𝑠 𝑋1 ∙ 𝑒 1−𝑠𝑖𝑛 𝑋2
2

+ 𝑋1 − 𝑋2 2

The domain is bounded by:

−10 ≤ 𝑋1 ≤ 0

−6.5 ≤ 𝑋2 ≤ 0

1. By DoE sampling a specific number of samples is generated and evaluated,
Latin Hypercube Sampling: reduced sample size, decrease unwanted input correlation

optimization
and/or

stochastic
parameters

▪ scalar responses
▪ vectors
▪ 1D signals
▪ derived variables
▪ 2D/3D field data

X1

X2

Xn

Y1

Y2

Yn



9 ©2023 ANSYS, Inc. / Confidential

analytically:
Min(Y) = -106.76

2. Responses are approximated by high-fidelity,
high-precision surrogate models.

3. Parameter influence is quantified using the approximation model.

Sensitivity Analysis
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-20.0

X1

X
2

Sensitivity Analysis
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-20.0

X1

X
2

(linear)
r = -0.5

Monte-Carlo-Sampling

• 1000 Monte-Carlo samples
no sample above limit state
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X1

X
2

(linear)
r = -0.5

Monte-Carlo-Sampling

• 1000 Monte-Carlo samples
=> no chance to extrapolate Probability of Failure
from response probability distribution

-20.0

(5
.0

-1
.5

)/
0

.7
5

 =
 3

σ

(9.5-5.0)/0.75 = 6

Mean:  5.0
Std.Dev.: 5.67 >> 0.75!
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X1

X
2

Plain Monte-Carlo-Sampling

• 300’000 Monte-Carlo samples (aborted)
no sample above limit state

Monte-Carlo-Simulation,
estimation for COV=10%:

n ≥ 100/PoFest  100/5e-07

= 2.0e+08!
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Advanced Methods for Reliability Analysis

First Order Reliability Method Adaptive Importance Sampling

Directional Sampling
Adaptive Response 

Surface Method

Importance Sampling
using Design Point
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Comparison of the determined PoF

Reliability algo. No. samples PoF

ARSM-DS 300 6.4e-07

AS 2 000 4.7e-07

DS 1 085 5.2e-07

FORM 890 1.3e-06

FORM + ISPUD + 6 000 4.7e-07

MCS1 200 000 000
(aborted at 300 000)

?

1 estimation Monte-Carlo-Simulation for COV=10%:
n ≥ 100/PoFest  100/5e-07 = 2.0e+08!



16 ©2023 ANSYS, Inc. / Confidential

Directional Sampling shown in standard gaussian space

PoF = 1.4e-06

PoF = 5.2e-07

No. of directions: 8
No. of parallel solver runs in presample: 4

No. of directions: 12
No. of parallel solver runs in presample: 1

6
.6

7
σ

6.67σ 6.67σ

2
σ

✓

!

!
!
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ARSM-DS

PoF = 6.4e-07
using 300 design for ARSM training

isoline Y = -20✓

✓
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ARSM-DS

PoF = 6.4e-07
using 300 design for ARSM training

isoline Y = -20✓

✓
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Adaptive Sampling

• in first step scan of parameter space 
• statistical information about failure domain 

are used to increase amount of failure events
• focus on most probable failure domain
• check for converged results

✓

PoF = 4.7e-07
✓
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FORM (*) + ISPUD

PoF = 1.3e-06

(*) default settings
( no start designs, desired accuracy = 5E-06 ) 
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PoF = 1.3e-06

FORM (**) + ISPUD (**) 13 start designs violating limit from sensitivity study,
desired accuracy = 5E-03
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FORM + ISPUD (*)

PoF = 4.7e-07
✓

(*) using 3 MOPF from preceding FORM no further 
search
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Conclusion

• advanced reliability methods are recommended for probability < 1/1000 since effort 
for Monte-Carlo approach increases inversely proportional to expected probability

• before reliability analysis run sensitivity study within the bounds of stochastic 
parameters or a robustness analysis to gain deeper design understanding

• reliability analysis operate in Standard Normal/Gaussian Space 

• reliability analysis in two steps: fast detection of failure mechanisms and efficient 
quantification of failure probability

• failure mechanisms detection: scan of the stochastically space up to 8 Sigma or by 
scaling the standard deviation (3.0 by default) 

• failure mechanisms detection is easy to use for half-space with transition from safe to 
unsafe domain, but search need to be adapted for local spots



Probability of failure for 
the cut-out scenario
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Scenario-Based Safety Assessment using Ansys optiSLang

Milage required to proof AD/ADAS system safety cannot be tested
operational in field➔ scenarios need to be simulated

Simulating complete required milage is also not feasible➔ collision
relevant scenarios need to be identified to significantly reduce
number of required simulations

Only «interesting» logical scenarios are analyzed

Sensitivity analysis in optiSLang allows for the identification of
parameters with highest impact & model failure

Reliability analysis in optiSLang to determine the probability of
failure for a logical scenario to compare performance between
ADAS software versions & identification of critical parameters

• Allows for ADAS software function testing, verification &
certification

• Identification of critical / relevant parameters
• Number of simulation scenarios can be reduced by factor 1000

Customer Goals

Solution

Benefits
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out: dist_R1T2

PosY0_R0
PosY0_R1 
PosY0_R2
JamSpeed

Cut-out scenario simulation

• ideal sensors to measure distance to preceding car

• custom AEB1 function by FMU-Plug-In

• emergency braking initiation based on: 
Time-to-Collision (TTC) and Time-to-break-threshold (TTBT)

lane R0

lane R1

lane R2

JAMVUT
(Vehicle Under Test)

R1T1
(lane R1 Target 1)

R1T1_PosX0, R1T1 _PosY0
R1T1 _Deceleration
R1T1 _Speed

VUT_PosX0, VUT_PosY0
VUT_Speed

X´VUT,0

Y´VUT,0

X´R1T1,0

Y´R1T1,0

X´R1T2,0

Y´R1T2,0

ego_offset

1 Autonomous Emergency Braking (AEB) 
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Parameter definition 11 parameters used for sensitivity/optimization
09 parameters used for stochastic analyses
04 dependent parameters
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Set up Parametric Variation Analysis
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Sensitivity Analysis

• scanning space of 11 parameters of type ‘Optimization’

• approximation by surrogate model without over-fitting,
objective measure of prognosis quality = CoP

• automatic determination of relevant parameter subspace

Parameter

Responses
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Sensitivity Analysis
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• collision detected

76

754

76

7

54

7

54

76

From VUT speed control by the AEB function can be observed:

• if situation permits, VUT will decelerate to jam speed and follows at 
safe distance (e.g. 7)

• braking to zero is forced only in hazardous situations (eg. 76, 54)

• physical limitation of VUT deceleration to 6 m/s²

physical limit
of 6 m/s²

Parameter

Responses
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Sensitivity Analysis

• restriction to physical deceleration limit of 6m/s² needed,
but for small MaxDecel min. distance is too large (e.g. 76)!

• significant increase of collisions for speed higher than 60 km/h

• ideal sensor not able to detect jam end through preceding car
therefore, drastic drop in TTC => collision cannot be prevented 

Parameter

Responses
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Robustness Analysis

usual safety distance [m]:
= 1/2  speed [km/h]

• 9 parameters included in stochastic analyses

• automatic ranking of parameter scatter based on MOP

• statistical analysis of responses
=> probability of collision is P_rel = 3%

Reasons for high PoF:

• no detection of jam end through leading car

• statistical model speed vs. offset includes
speeders and pushers, no Adaptive Cruise Control (ACC) • collision detected
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• motivation: reliability evaluation against fatalities at high speeds, 
injuries at medium speeds and whiplash at low speeds

• goal: multilinear curve as limit state for impact velocity depending 
on initial speed

• solution: for reliability analysis mathematical expressions can be 
used on both sides of the limit state definition

Reliability Analyses: Limiting the impact velocity VUT_Speed = R1T1_Speed



35 ©2023 ANSYS, Inc. / Confidential

Reliability Analyses: Limiting the impact velocity

(60,10)

(80,20)

(100,40)

(0,0)

Limit state

R1T1_Speed [km/h]

eg
o

_v
_i

m
p

ac
t

[k
m

/h
]

• exemplary shown results from the ISPUD analysis

• one unsafe domain with MPFPointDesign

R1T1_Speed Jam_Speed ego_offset

59.2 km/h 7.04 km/h 19.38 m
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Reliability Analyses: Limiting the impact velocity

Estimation the probability of exceeding the 
limit state function by means of:

• Adaptive Importance Sampling (AS) and

• Importance Sampling Procedure
using Design Points (ISPUD)

PoF = 3 / 100 000

Algo.
no.

samples
Iteration,

Inkrements
PoF Std.Dev.

CoV
[%]

AS 14 500 20 / 20 3.02E-05 4.84E-06 16.0%

ISPUD 20 002 20 x 1000 3.69E-05 4.54E-06 12.3%



A
S

IS
P

U
D

MC for COV=10%: n ≥ 100/3.3e-05  3 Million samples
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Conclusion

• scenario-based software in the loop testing of ADAS / AD functions

• automated workflows enable automated tests running overnight, e.g. after update of 
assistance function, of scenario-based simulation or of statistical models

• sensitivity study to scan ODD for collision-relevant scenario characteristics
(edge and corner case identification)

• robustness analysis to estimate results/KPI variation and to identify safety critical 
inputs

• reliability analysis to efficiently quantify small probability for limit values, complex 
mathematical expressions can be used as limit states



Nested Robustness Evaluation in 
Multi-objective Design Optimization 
Validation
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How to Define the Robustness of a Design?

• Intuitively: The performance of a robust design is largely unaffected by 
random perturbations

• Variance indicator: The coefficient of variation (CoV) of the objective 
function and/or constraint values is not greater than the CoV of the 
input variables

• Sigma level: Keep an undesired performance outside an interval of 
mean +/- sigma level (e.g. design for six-sigma)

• Probability indicator (Reliability analysis): The probability of 
reaching undesired performance is smaller than an acceptable value

Li
m

it
 c

ri
ti

ca
l

St
ab

ili
ty

 o
f 

   
   

   
   

   
   

   
 

re
sp

o
n

se
/K

P
I  

   
   

   
   

  r
es

p
o

n
se

V
ar

ia
n

ce
 b

as
ed

ro
b

u
st

n
es

s 
sa

m
p

lin
g

Probability based
reliability analysis

Le
ve

l o
f 

kn
o

w
le

d
ge

 a
b

o
u

t
sc

at
te

r/
u

n
ce

ta
in

ti
es

Le
ve

l o
f 

an
al

ys
is

 c
o

m
p

le
xi

ty
 /

co
m

p
u

ta
ti

o
n

al
 e

ff
o

rt

Le
ve

l o
f 

fa
ilu

re
 p

ro
b

ab
ili

ty
V

er
y 

ra
re

ra
re

n
o

t 
re

le
va

n
t

≈1
E–

6
≈1

/1
0

0
0



40 ©2023 ANSYS, Inc. / Confidential

How to Define the Robustness of a Design?

Robustness in terms of stability

• Performance (objective) of robust optimum 
is less sensitive to input uncertainties

• Minimization of statistical evaluation of 
objective function f (e.g. minimize mean 
and/or standard deviation)

Robustness in terms of requirements

• Safety margin (sigma level) of one or more 
responses y:

• Reliability (failure probability) with respect to 
given limit state
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Iterative (single objective) Robust Design Optimization

• Decoupled optimization and robustness/reliability analysis

• For each optimization run the safety factors are adjusted for the critical model 
responses 

 In our implementation variance-based robustness analysis is used inside the iteration 
and a final reliability proof is performed for the final design

Definition of 
design and 
stochastic 
variables

Sensitivity 
analysis

Design 
failure

Update 
constraints

Deterministic 
optimization

Variance-
based 

robustness 
evaluation

Final 
reliability 

proof

Optimal 
and 

robust 
design 

?
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Coupled (single objective) Robust Design Optimization

• Fully coupled optimization and robustness/reliability analysis
• For each optimization (nominal) design the robustness/reliability analysis is performed

 Implementation uses small sample variance-based robustness measures during the 
optimization (≥ 10 Designs) and a final (more accurate) reliability proof

But still the procedure is often not applicable to complex CAE models
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Hybrid Robust Design Optimization

• Decoupled multi-objective optimization and robustness/reliability analysis

• For each validation design from the optimization run averaged performances are 
acquired

• Applicable to variance- and reliability-based RDO

Definition of 
design and 
stochastic 
variables

Sensitivity 
analysis

Deterministic
multi-objective

optimization

Variance-based 
robustness 
evaluation

Single 
objective

optimization

Optimal and 
robust design 

Selection of
best

optimization
approach

Final reliability
proof



Example
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Specification

Requirement Value Unit 

Peak torque 400 Nm

Peak power @ 3krpm, 6krpm 120, 100 kW

Cont. torque @ 1krpm, 5krpm 300, 124 Nm

Maximum speed 7000 Rpm

Cooling system WJ

Coolant flow rate ≤ 6.5 l/min

Coolant fluid type EWG

Coolant inlet temperature 65 °C

Line current ≤ 500 Arms

DC bus voltage 350 V

Package envelope 330 (Φ) x 220 mm
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Concept Design

• Machine topology:

- Stator slots = 24

- Rotor poles = 16

- V-shaped magnets

• Materials:

- Magnets: N48UH

- Magnetic cores: 235-35A

• Winding:

- Double-layer, concentrated

- Parallel paths per phase = 6

• Geometry:

- Stator diameter (mm) = 300

- Mechanical airgap (mm) = 1

Winding pattern Cooling system
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Optimization Scenario

• Objectives:

❑Maximum efficiency over WLTP-3

❑Minimum active volume

• Constraints:

❑ Continuous torque (Nm) @ 1krpm ≥ 300

❑ Continuous torque (Nm) @ 5krpm ≥ 124

❑ Peak power (kW) @ 3krpm ≥ 120

❑ Peak power (kW) @ 6krpm ≥ 100

❑ Torque ripples (%) @ 1krpm ≤ 10

❑ Von-Mises stress (MPa) @ 8.4krpm ≤ 300

WLTP-3 Drive Cycle
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Parameter Range Unit 

Active length [70; 150] mm

Bridge thickness [0.4; 3] mm

Magnet post [0.4; 3] mm

Magnet thickness [4; 10] mm

Pole arc ratio [0.7; 1]

Pole V angle [90; 180] °

Slot depth ratio1 [0.45; 0.8]

Slot width ratio2 [0.4; 0.7]

Split ratio3 [0.58; 0.85]

Slot opening ratio4 [0.2; 0.8]

Initial Design Space

1 Slot Depth / (Slot Depth + Stator Back Iron Thickness)

2 Slot Width / (Slot Width + Stator Tooth Width)

3 Stator Inner Diameter/ Stator Outer Diameter

4 Slot Opening Width/ Slot Pitch

Magnet 
Web

Slot 
Depth

Tooth 
Width

Magnet 
Thickness

Bridge 
thickness

Pole
angle

Slot Opening 
Width

Magnet 
PostPole

arc
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Motor-CAD Integration

• Motor-CAD is ActiveX driven through 
Python environment in order to:

1. Assign input design parameters

2. Run multiphysics calculations

3. Extract output performance data

• ActiveX controls can be found in Motor-CAD 
in one click.

Parametric system

1

2

3 31 Extract 
Responses

Assign
Parameters

2Calculations



AMOP results 
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Multi-objective optimization

• Optimization Wizard to build Multi-objective optimization

Automatic Build Process with One-Click-Optimization and Validation



52 ©2023 ANSYS, Inc. / Confidential

Variance-based robustness evaluation  for best designs

• Optimization Wizard to build Multi-objective optimization

- Add Robustness System to Validator System

- “Last Chance” to add stochastic Properties for the Parameters
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Variance-based robustness evaluation  for best designs

• Optimization Wizard to build Multi-objective optimization

- Add Robustness System to Validator System

- “Last Chance” to add stochastic Properties for the Parameters
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AMOP – with validated multi-objective optimization

• AMOP:

- Refine MOP with objectives in mind

• One-Click-Optimization:

- Multi-objective optimization

• Validator System

- Validates few best design candidates
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AMOP – with validated multi-objective optimization

• AMOP:

- Refine MOP with objectives in mind

• One-Click-Optimization:

- Multi-objective optimization

• Validator System

- Validates few best design candidates



Validation results 
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Summary

• Hybrid Approach shows non-approximated Pareto front with Standard deviation

- Compromise Evaluation can be done with Robustness in mind

- Fragility Curves could be incorporated

Pareto-Front in Black/ Red as Approximation and Green 
from the Validation

Pareto-Front with Standard Deviation of the two 
objectives
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Process Integration

Parametric model as base for:

Response variables
Outputs from the      
systemThe CAE process

generates the 
results according 
to the inputs

Design variables
Entities that define the design space
(Parameter type: Optimization

• User-defined optimization (design) space

Scattering variables
Entities that define the robustness space
(Parameter type: Stochastic)

• Naturally given robustness (random) space

Input variables
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Input and Response Variables

• Scalar design variables:
▪ of value type REAL, INTEGER, STRING and BOOL
▪ and with resolution of continuous, discrete and binary

• Scalar stochastic variables with continuous resolution

stochastic variablesdesign variables Input variables

Response variables
Numeric values only

• Scalar responses with continuous resolution
• Vector responses with continuous resolution having variable length
• Signal responses having variable length and several channels
• 2D and 3D field data using enterprise add-on (Statistics on Structure SoS)



63 ©2023 ANSYS, Inc. / Confidential

➢ Powerful procedure to check design quality: Robustness 
evaluation with optimized DoE, Proof of Reliability with 
leading edge algorithms even for multiple failure regions.

➢ Statistical analysis of input correlations and fit of 
distribution functions.

➢ Guided wizards for easy and safe usage.

Verify Design Quality by Robustness Analysis

1 Latin Hypercube 
Sampling

2 Output parameter 
variation

3 Parameter 
Importanceo High entry barrier to start with robustness

o High simulation effort using standard 
Monte-Carlo approach

o Optimum not check against manufacturing scattering
o No quantification of risks
o No ranking of parameter scatter (Tolerances)

o Quantification of variable scatter as qualified input 
for subsequent stochastic analysis

o Easy setup of robustness & reliability analysis 
o Automatic ranking of parameter scatter
o Less simulation even for small probability of failure

Before Scenario

After Scenario
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Exceedance Probability

• Probability of reaching values above a limit  

• For Gaussian distribution: m x

fX(x)

x
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How to Define the Robustness of a Design?

• Performance (objective) of robust optimum 
is less sensitive to input uncertainties

• Minimization of statistical evaluation of 
objective function f (e.g. minimize mean 
and/or standard deviation):

• Safety margin (sigma level) of one or more 
responses y: 

• Reliability (failure probability) with respect 
to given limit state:

input

o
b

je
ct

iv
e

Robustness in terms of stability Robustness in terms of requirements
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How to Define the Robustness of a Design?

• Intuitively: The performance of a robust design is largely unaffected
by random perturbations

• Variance indicator: The coefficient of variation (CoV) of the objective function
and/or constraint values is not greater than the CoV of the input variables

• Sigma level: Keep an undesired performance outside an interval of 
mean +/- sigma level (e.g. design for six-sigma)

• Probability indicator: The probability of reaching undesired
performance is smaller than an acceptable value
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How to quantify uncertainty?

• Intuitively: The performance of a robust design is largely unaffected by random 
perturbations

• Variance indicator: The coefficient of variation (CoV) of the objective function and/or 
constraint values is not greater than the CoV of the input variables

• Sigma level: Keep an undesired performance outside an interval of 
mean +/- sigma level (e.g. design for six-sigma)

• Probability indicator: The probability of reaching undesired performance is smaller 
than an acceptable value in
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2. derive and include parameter
scatter and correlation

5. parameter importance
by robustness analysis
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1. automate
simulation workflow
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4. check the variation6. quantify uncertainty
by reliability analysis
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FORM (*) + ISPUD

PoF = 1.3e-06

(*) default settings

shown in standard gaussian space
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FORM (*) + ISPUD

(*) 13 start design violating limit from sensitivity 
study, no further initial samples,
desired accuracy = 0.005

shown in standard gaussian space

PoF = 1.3e-06
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